RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2025 Volume 245, Pages 3–15 (Mi into1387)

Representation of difference operators on $\mathbb Z^3$ that are invariant under rotations

E. G. Alipatov

Voronezh State University

Abstract: In the space $l_\infty(\mathbb Z^3,\mathbb C)$, we consider the difference operator
\begin{equation*} (\mathcal{A}x)_{n}=\sum_{k\in\mathbb{Z}^3}a_{k} x_{n-k}, \end{equation*}
which is invariant under the action of the group generated by rotations around the coordinate axes by the angle $\pi/2$. The equality of the coefficients $a_k$, $k\in\mathbb Z^3$, corresponding to the same orbit is established. A representation of the operator based on this property is proposed.

Keywords: difference operator, representation of a group, finite group, invariance, rotation group, orbit

UDC: 517.962; 512.547

MSC: 47A67, 20C33, 39A12

DOI: 10.36535/2782-4438-2025-245-3-15



© Steklov Math. Inst. of RAS, 2026