RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya" // Archive

Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 1984 Volume 25, Pages 115–207 (Mi intd76)

This article is cited in 53 papers

Algebraic $K$-theory and the norm residue homomorphism

A. A. Suslin


Abstract: Recent results on the structure of the group $K_2$ of a field and its connections with the Brauer group are presented. The $K$-groups of Severi–Brauer varieties and simple algebras are computed. A proof is given of Milnor's conjecture that for any field $F$ and natural number $n>1$ there is the isomorphism $R_{n,F}\colon K_2(F)/nK_2(F)\overset\sim\to_n\mathrm{Br}(F)$. Algebrogeometric applications of the main results are presented.

UDC: 512.667.3


 English version:
Journal of Soviet Mathematics, 1985, 30:6, 2556–2611

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026