RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2026 Volume 90, Issue 1, Pages 112–148 (Mi im9717)

Integrable deformations of principal chiral model from solutions of associative Yang–Baxter equation

D. A. Domanevskya, A. M. Levinbc, M. A. Olshanetskycd, A. V. Zotovec

a Institute for Theoretical and Mathematical Physics of Lomonosov Moscow State University
b National Research University Higher School of Economics, Moscow
c National Research Centre "Kurchatov Institute", Moscow
d Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
e Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: We describe deformations of the classical principal chiral model and the $(1+1)$-dimensional Gaudin model related to the Lie group $\mathrm{GL}_N$. The deformations are generated by $R$-matrices satisfying the associative Yang–Baxter equation. Using the coefficients of the expansion for these $R$-matrices we derive equations of motion based on a certain ansatz for $U$$V$ pair satisfying the Zakharov–Shabat equation. Another deformation comes from the twist function, which we identify with the cocentral charge in the affine Higgs bundle underlying the Hitchin approach to $2d$ integrable models.

Keywords: integrable field theory, Hitchin system, soliton equation.

MSC: Primary 14H70, 37K10, 81R12; Secondary 37K10, 81R12

Received: 16.01.2025
Revised: 03.03.2025

DOI: 10.4213/im9717


 English version:
Izvestiya: Mathematics, 2026, 90:1, 109–143


© Steklov Math. Inst. of RAS, 2026