RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2025 Volume 89, Issue 5, Pages 32–53 (Mi im9639)

On uniquely solvable Fokker–Planck–Kolmogorov equations

V. I. Bogachevab, S. V. Shaposhnikovab

a Lomonosov Moscow State University
b National Research University Higher School of Economics, Moscow

Abstract: In this paper we obtain broad sufficient conditions for the existence of probability solutions to the Cauchy problem for Fokker–Planck–Kolmogorov equations on the real line without using Lyapunov functions. In the multidimensional case, we prove that if the Fokker–Planck–Kolmogorov equation for an elliptic operator $L$ has a probability solution $\sigma$, and the Cauchy problem for this equation has a unique probability solution for every initial probability distribution, then there exists a strongly continuous Markov operator semigroup on the space $L^1(\sigma)$ with respect to which the measure $\sigma$ is invariant and the generator of which extends the operator $L$. We give an answer to the long-standing question about existence of a sub-Markov semigroup different from the canonical semigroup with the generator extending $L$.

Keywords: Fokker–Planck–Kolmogorov equation, Cauchy problem, stationary equation.

UDC: 517.955

MSC: 35Q84

Received: 03.08.2024
Revised: 31.01.2025

DOI: 10.4213/im9639


 English version:
Izvestiya: Mathematics, 2025, 89:5, 900–919

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026