RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2025 Volume 89, Issue 1, Pages 18–29 (Mi im9594)

This article is cited in 1 paper

The split $5$-Casimir operator and the structure of $\wedge \mathfrak{ad}^{\otimes 5}$

A. P. Isaevab, S. O. Krivonosac

a Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, Moscow Region
b Lomonosov Moscow State University, Faculty of Physics
c Tomsk State University of Control Systems and Radioelectronics

Abstract: In the present paper, using the split Casimir operators, we find the decomposition of the antisymmetric part of the fifth power of the adjoint representation $\mathfrak{ad}^{\otimes 5}$. This decomposition contains, in addition to the representations that appeares in the decomposition of $\mathfrak{ad}^{\otimes 4}$, only one new representation of $X_5$. The universal dimension of this representation for exceptional Lie algebras was proposed in [1]. Our decomposition holds for all Lie algebras.

Keywords: adjoint representation, split Casimir operator, Vogel parameters.

UDC: 51

MSC: 17B10, 17B15, 17B05, 22E46

Received: 10.04.2024

DOI: 10.4213/im9594


 English version:
Izvestiya: Mathematics, 2025, 89:1, 15–25

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026