RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1992 Volume 56, Issue 1, Pages 38–74 (Mi im957)

This article is cited in 3 papers

Semistable sheaves on a two-dimensional quadric, and Kronecker modules

B. V. Karpov


Abstract: The author studies the connection between semistable sheaves on $\mathbf P^1\times\mathbf P^1$ that are represented as the cokernel of an injective morphism $E_1\otimes\mathbf C^m\to E_2\otimes\mathbf C^n$, where $E_1$ and $E_2$ are exceptional bundles, and semistable Kronecker modules $\mathbf C^m\otimes\operatorname{Hom}(E_1,E_2)^*\to\mathbf C^n$. He obtains sufficient conditions on the topological invariants of the sheaves for the moduli space of semistable sheaves and the corresponding Kronecker moduli space to coincide. This gives important geometric information concerning the moduli spaces of the bundles.

UDC: 512.723

MSC: Primary 14J60, 14J26; Secondary 14F05, 14J10

Received: 16.04.1991


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1993, 40:1, 33–66

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026