RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2024 Volume 88, Issue 6, Pages 139–156 (Mi im9569)

Superposition of layers of cubic lattice

V. P. Grishukhin

Central Economics and Mathematics Institute of the Russian Academy of Sciences, Moscow

Abstract: The cube is the Dirichlet–Voronoi cell of the integer lattice $Z^n$. We study the family of $(n+1)$-dimensional lattices $L_Z^{n+1}(h)$ obtained by superposition of layers of the lattice $Z^n$ and depending on the distance $h$ between the layers. The quadratic forms corresponding to these lattices generate a family of forms $f_h$. If $h$ varies from 0 to infinity, the forms $f_h$ pierce the cone of positive quadratic forms from one its boundary to another boundary and pass through a series of edge-forms.

Keywords: cubic lattice, superposition of layers, Dirichlet–Voronoi cells.

UDC: 511.9+514.174

MSC: Primary 52B11; Secondary 52C22

Received: 25.12.2023
Revised: 21.03.2024

DOI: 10.4213/im9569


 English version:
Izvestiya: Mathematics, 2024, 88:6, 1138–1153

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026