RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2024 Volume 88, Issue 3, Pages 192–202 (Mi im9485)

This article is cited in 1 paper

The length of the cut locus on convex surfaces

Liping Yuanabc, T. Zamfirescuabde

a School of Mathematical Sciences, Hebei Normal University, P. R. China
b Hebei International Joint Research Center for Mathematics and Interdisciplinary Science, P. R. China
c Hebei Key Laboratory of Computational Mathematics and Applications, P. R. China
d Fachbereich Mathematik, Technischen Universität Dortmund, Dortmund, Germany
e Romanian Academy, Bucharest, Romania

Abstract: In this paper, we prove the conjecture stating that, on any closed convex surface, the cut locus of a finite set $M$ with more than two points has length at least half the diameter of the surface.

Keywords: closed convex surface, cut locus, finite set, diameter.

UDC: 515.124

MSC: 53C45, 53C22

Received: 10.04.2023

Language: English

DOI: 10.4213/im9485


 English version:
Izvestiya: Mathematics, 2024, 88:3, 590–600

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026