RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2024 Volume 88, Issue 2, Pages 80–95 (Mi im9473)

This article is cited in 1 paper

Arithmetic of certain $\ell$-extensions ramified at three places. IV

L. V. Kuz'min

National Research Centre "Kurchatov Institute", Moscow

Abstract: Let $\ell$ be an odd regular prime, $k$ be the $\ell$th cyclotomic field, and $K=k(\sqrt[\ell]{a})$, where $a$ is a natural number that has exactly three distinct prime divisors. Assuming that there are exactly three places ramified in $K_\infty/k_\infty$, we study the $\ell$-component of the class group of the field $K$. For $\ell>3$, we prove that there always exists an unramified extension $\mathcal{N}/K$ such that $G(\mathcal{N}/K)\cong (\mathbb Z/\ell\mathbb Z)^3$, and all places over $\ell$ split completely in $\mathcal{N}/K$. If $\ell=3$ and $a$ is of the form $a=p^rq^s$, we give a complete description of the possible structure of the $\ell$-component of the class group of $K$. Some other results are also obtained.

Keywords: Iwasawa theory, Tate module, extension with given ramification, the Riemann–Hurwitz formula.

UDC: 511.236.3

MSC: 11R23, 11R18

Received: 08.03.2023
Revised: 26.09.2023

DOI: 10.4213/im9473


 English version:
Izvestiya: Mathematics, 2024, 88:2, 270–283

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026