RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2023 Volume 87, Issue 5, Pages 164–176 (Mi im9371)

This article is cited in 3 papers

The renormalization group transformation in the generalized fermionic hierarchical model

M. D. Missarov, D. A. Khajrullin

Kazan (Volga Region) Federal University

Abstract: We consider a two-dimensional hierarchical lattice in which the vertices of a square represent an elementary cell. In the generalized hierarchical model, the distance between opposite vertices of a square differs from that between adjacent vertices and is a parameter of the new model. The Gaussian part of the Hamiltonian of the 4-component generalized fermionic hierarchical model is invariant under the block-spin renormalization group transformation. The transformation of the renormalization group in the space of coefficients, which specify the Grassmann-valued density of the free measure, is explicitly calculated as a homogeneous mapping of degree four in the two-dimensional projective space.

Keywords: renormalization group, hierarchical lattice, fermionic model, projective space.

UDC: 517.538

MSC: 81T30, 81Q65, 11F33, 83F05, 92D20

Received: 04.05.2022

DOI: 10.4213/im9371


 English version:
Izvestiya: Mathematics, 2023, 87:5, 1011–1023

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026