RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2023 Volume 87, Issue 4, Pages 186–204 (Mi im9354)

This article is cited in 6 papers

On stabilization of solutions of second-order semilinear parabolic equations on closed manifolds

D. V. Tunitsky

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow

Abstract: The paper is concerned with problems of existence, uniqueness, and stabilization of weak solutions of one class of semilinear second-order parabolic differential equations on closed manifolds. These equations are inhomogeneous analogues of the Kolmogorov–Petrovskii–Piskunov–Fisher equation, and have significant applied and mathematical value.

Keywords: the Kolmogorov–Petrovskii–Piskunov–Fisher equation, second-order parabolic equation, semilinear equation on manifold, weak solution, stabilization.

UDC: 517.956.4+517.956.8+517.955

MSC: Primary 35L70; Secondary 35L60, 58A17

Received: 11.06.2022

DOI: 10.4213/im9354


 English version:
Izvestiya: Mathematics, 2023, 87:4, 817–834

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026