RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2023 Volume 87, Issue 6, Pages 121–149 (Mi im9353)

This article is cited in 1 paper

A method for solution of a mixed boundary value problem for a hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$

A. Yu. Trynin

Saratov State University

Abstract: A mixed boundary value problem with arbitrary continuous, not necessarily satisfying boundary conditions, functions in initial conditions and inhomogeneities of the equation is solved. A method is proposed for finding a generalized solution by a modification of the interpolation operators of functions constructed from solutions of Cauchy problems with second-order differential expression. Methods of finding the Fourier coefficients of auxiliary functions using the Stieltjes integral or the resolvent of the third-order Cauchy differential operator are proposed.

Keywords: boundary value problem, generalized solution, method of separation of variables.

UDC: 517.518.8

MSC: 34B24, 34L40

Received: 10.04.2022
Revised: 20.10.2022

DOI: 10.4213/im9353


 English version:
Izvestiya: Mathematics, 2023, 87:6, 1227–1254

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026