RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2023 Volume 87, Issue 4, Pages 91–132 (Mi im9305)

Variations of $v$-change of time in an optimal control problem with state and mixed constraints

A. V. Dmitruk

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: For a general optimal control problem with state and regular mixed constraints we propose a proof of the maximum principle based on the so-called $v$-change of time variable $t \mapsto \tau$, under which the original time becomes an additional state variable subject to the equation $dt/d\tau = v(\tau)$, while the additional control variable $v(\tau)\geqslant 0$ is piecewise constant, and its values become arguments of the new problem.

Keywords: state and mixed constraints, positively linearly independent vectors, $v$-change of time, Lebesgue–Stieltjes measure, stationarity conditions, Lagrange multipliers, functional on $L_\infty$, weak* compactness, maximum principle.

UDC: 517.97

MSC: 49K15, 49K27

Received: 20.12.2021
Revised: 31.08.2022

DOI: 10.4213/im9305


 English version:
Izvestiya: Mathematics, 2023, 87:4, 726–767

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026