RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2025 Volume 89, Issue 4, Pages 219–226 (Mi im9292)

A further sufficient condition for the determinantal conjecture

Yaroslav N. Shitov


Abstract: Let $A$, $B$ be $n\times n$ normal matrices with eigenvalues $(a_1,\dots,a_n)$, $(b_1,\dots,b_n)$, respectively. We show that $\det(A+B)$ lies in the convex hull of
$$ \bigcup_{\psi\in\mathcal{S}_n}\biggl\{\prod_{i=1}^n(a_i+b_{\psi_i})\biggr\} $$
if all eigenvalues of $A$, $B$ are real, except for three eigenvalues of $B$.

Keywords: normal matrices, eigenvalues, determinantal conjecture.

UDC: 512.643.5

MSC: 15A18, 15B57

Received: 21.11.2021

Language: English

DOI: 10.4213/im9292


 English version:
Izvestiya: Mathematics, 2025, 89:4, 862–869

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026