RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 3, Pages 3–46 (Mi im9155)

This article is cited in 2 papers

On Jutila's integral in the circle problem

M. A. Koroleva, D. A. Popovb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology

Abstract: We study a ‘correlation’ function $\mathcal{K}_{P} = \mathcal{K}_{P}(T;H,U)$ of the error term $P(t)$ in the circle problem, that is, the integral of the product $P(t)P(t+U)$ over the interval $(T,T+H]$, $1\,{\le}\, U, H\,{\le}\, T$. The case of small $U$, $1\le U\ll \sqrt{T}$, was in essence studied by Jutila in 1984. It turns out that, for all these $U$ and sufficiently large $H$, $\mathcal{K}_{P}$ attains its maximum possible value. In this paper we study the case of ‘large’ $U$, $\sqrt{T}\ll U\le T$, when the behaviour of $\mathcal{K}_{P}$ becomes more complicated. In particular, we prove that the correlation function may be positive and negative of maximally large modulus as well as having very small modulus on sets of values of $U$ of positive measure.

Keywords: circle problem, Jutila's conjecture, Jutila's formula, correlation function, simultaneous approximations.

UDC: 511.335+511.338

MSC: 11M06, 11N37

Received: 12.02.2021
Revised: 25.06.2021

DOI: 10.4213/im9155


 English version:
Izvestiya: Mathematics, 2022, 86:3, 413–455

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026