RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 6, Pages 205–244 (Mi im9104)

This article is cited in 2 papers

The Diophantine problem in the classical matrix groups

A. G. Myasnikov, M. Sohrabi

Mathematical Department, Stevens Institute of Technology, Hoboken, USA

Abstract: In this paper we study the Diophantine problem in the classical matrix groups $\mathrm{GL}_n(R)$, $\mathrm{SL}_n(R)$, $\mathrm{T}_n(R)$ and $\mathrm{UT}_n(R)$, $n\geqslant 3$, over an associative ring $R$ with identity. We show that if $G_n(R)$ is one of these groups, then the Diophantine problem in $G_n(R)$ is polynomial-time equivalent (more precisely, Karp equivalent) to the Diophantine problem in $R$. When $G_n(R)=\mathrm{SL}_n(R)$ we assume that $R$ is commutative. Similar results hold for $\mathrm{PGL}_n(R)$ and $\mathrm{PSL}_n(R)$ provided $R$ has no zero divisors (for $\mathrm{PGL}_n(R)$ the ring $R$ is not assumed to be commutative).

Keywords: Diophantine problems, equations, classical matrix groups, decidability, undecidability.

UDC: 512.54.0

MSC: 03C60

Received: 11.09.2020
Revised: 21.02.2021

DOI: 10.4213/im9104


 English version:
Izvestiya: Mathematics, 2021, 85:6, 1220–1256

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026