RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 3, Pages 222–238 (Mi im9033)

This article is cited in 2 papers

Approximation in measure: the Dirichlet problem, universality and the Riemann hypothesis

J. Falcóa, P. M. Gauthierb

a Departamento de Análisis Matemático, Universidad de Valencia, Burjasot (Valencia), Spain
b Département de mathématiques et de statistique, Université de Montréal, Montréal, Québec, Canada

Abstract: We use approximation in measure to solve an asymptotic Dirichlet problem on arbitrary open sets and to show that many functions, including the Riemann zeta-function, are universal in measure. Connections with the Riemann hypothesis are suggested.

Keywords: harmonic approximation in measure, harmonic, holomorphic, Dirichlet problem, Riemann zeta-function, universality.

UDC: 517.577+511.331

MSC: Primary 30K99, 30E10; Secondary 31C12, 11M06

Received: 13.03.2020
Revised: 12.06.2020

DOI: 10.4213/im9033


 English version:
Izvestiya: Mathematics, 2021, 85:3, 547–561

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026