RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2020 Volume 84, Issue 6, Pages 197–222 (Mi im8992)

This article is cited in 2 papers

On the uniform approximation of functions of bounded variation by Lagrange interpolation polynomials with a matrix ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ of Jacobi nodes

A. Yu. Tryninab

a Saratov State University
b Moscow Center for Fundamental and Applied Mathematics

Abstract: Let sequences $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ satisfy the relations $\alpha_n\in\mathbb{R}$, $\beta_n\in\mathbb{R}$, $\alpha_n=o(\sqrt{n/\ln n})$, $\beta_n=o(\sqrt{n/\ln n})$ as $n\to \infty $, and let $[a,b]\subset (0,\pi)$ and $f\in C[a,b]$. We redefine the function $f$ as $F$ on the interval $[0,\pi]$ by polygonal arcs in such a way that the function remains continuous and vanishes on a neighbourhood of the ends of the interval. Also let the function $f$ and the pair of sequences $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ be connected by the equiconvergence condition. Then for the classical Lagrange–Jacobi interpolation processes $\mathcal{L}_n^{(\alpha_n,\beta_n)}(F,\cos\theta)$ to approximate $f$ uniformly with respect to $\theta $ on $[a,b]$ it is sufficient that $f$ have bounded variation $V^{b}_{a}(f)<\infty$ on $[a,b]$. In particular, if the sequences $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are bounded, then for the classical Lagrange–Jacobi interpolation processes $\mathcal{L}_n^{(\alpha_n,\beta_n)}(F,\cos\theta)$ to approximate $f$ uniformly with respect to $\theta $ on $[a,b]$ it is sufficient that the variation of $f$ be bounded on $[a,b]$, $V^{b}_{a}(f)<\infty$.

Keywords: sinc-approximations, interpolation of functions, uniform approximation, interpolation polynomials, bounded variation.

UDC: 517.518.85

MSC: 41A10

Received: 19.11.2019
Revised: 21.01.2020

DOI: 10.4213/im8992


 English version:
Izvestiya: Mathematics, 2020, 84:6, 1224–1249

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026