RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2021 Volume 85, Issue 1, Pages 98–117 (Mi im8989)

This article is cited in 2 papers

Interior estimates for solutions of linear elliptic inequalities

V. S. Klimov

P.G. Demidov Yaroslavl State University

Abstract: We study the wedge of solutions of the inequality $A(u) \geqslant 0$, where $A$ is a linear elliptic operator of order $2m$ acting on functions \linebreak of $n$ variables. We establish interior estimates of the form $\|u; W_p^{2m-1}(\omega)\| \leqslant C(\omega,\Omega) \|u;L(\Omega)\|$ for the elements of this wedge, where $\omega$ is a compact subdomain of $\Omega$, $W_p^{2 m-1}(\omega)$ is the Sobolev space, $p (n-1)<n$, $L(\Omega)$ is the Lebesgue space of integrable functions, and the constant $C(\omega,\Omega)$ is independent of $u$.

Keywords: wedge, function, norm, elliptic inequality, Banach space.

UDC: 517.956.222

MSC: 35R45, 35J30, 31C05

Received: 13.11.2019

DOI: 10.4213/im8989


 English version:
Izvestiya: Mathematics, 2021, 85:1, 92–110

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026