RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2020 Volume 84, Issue 4, Pages 66–78 (Mi im8948)

This article is cited in 4 papers

Displaying the cohomology of toric line bundles

K. Altmanna, D. Ploogb

a Institut für Mathematik, Freie Universität Berlin, Germany
b Fachbereich Mathematik, Universität Hannover, Hannover, Germany

Abstract: There is a standard approach to calculate the cohomology of torus-invariant sheaves $\mathcal{L}$ on a toric variety via the simplicial cohomology of the associated subsets $V(\mathcal{L})$ of the space $N_\mathbb{R}$ of 1-parameter subgroups of the torus. For a line bundle $\mathcal{L}$ represented by a formal difference $\Delta^+-\Delta^-$ of polyhedra in the character space $M_\mathbb{R}$[1] contains a simpler formula for the cohomology of $\mathcal{L}$, replacing $V(\mathcal{L})$ by the set-theoretic difference $\Delta^- \setminus \Delta^+$. Here, we provide a short and direct proof of this formula.

Keywords: toric variety, Cartier divisor, line bundle, sheaf cohomology, lattice, polytope.

UDC: 512.7

MSC: 14M25, 52B20, 14C20, 14F05

Received: 02.07.2019

DOI: 10.4213/im8948


 English version:
Izvestiya: Mathematics, 2020, 84:4, 683–693

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026