RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2020 Volume 84, Issue 4, Pages 5–40 (Mi im8910)

On orthogonal projections of Nöbeling spaces

S. M. Ageev

Belarusian State University

Abstract: Suppose that $0\le k<\infty$. We prove that there is a dense open subset of the Grassmann space $\operatorname{Gr}(2k+1,m)$ such that the orthogonal projection of the standard Nöbeling space $N^m_k$ (which lies in $\mathbb R^m$ for sufficiently large $m$) to every $(2k+1)$-dimensional plane in this subset is $k$-soft and possesses the strong $k$-universal property with respect to Polish spaces. Every such orthogonal projection is a natural counterpart of the standard Nöbeling space for the category of maps.

Keywords: Nöbeling space, Dranishnikov and Chigogidze resolutions, strong fibrewise $k$-universal property, filtered finite-dimensional selection theorem, $\operatorname{AE}(k)$-space.

UDC: 515.126.83+515.124.62

MSC: 54F65, 57N20, 54C53, 55P15

Received: 02.03.2019
Revised: 01.07.2019

DOI: 10.4213/im8910


 English version:
Izvestiya: Mathematics, 2020, 84:4, 627–658

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026