RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2020 Volume 84, Issue 2, Pages 126–151 (Mi im8894)

This article is cited in 12 papers

Vaught's conjecture for weakly $o$-minimal theories of finite convexity rank

B. Sh. Kulpeshovabc

a Kazakh-British Technical University
b Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan
c Novosibirsk State Technical University

Abstract: We prove that weakly $o$-minimal theories of finite convexity rank having less than $2^{\omega}$ countable models are binary. Our main result is the confirmation of Vaught's conjecture for weakly $o$-minimal theories of finite convexity rank.

Keywords: weak $o$-minimality, Vaught's conjecture, countable model, convexity rank, binarity.

UDC: 510.67

MSC: Primary 03C64; Secondary 03C15, 03C07, 03C50

Received: 13.01.2019

DOI: 10.4213/im8894


 English version:
Izvestiya: Mathematics, 2020, 84:2, 324–347

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026