RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2020 Volume 84, Issue 5, Pages 3–19 (Mi im8889)

This article is cited in 4 papers

Uniqueness theorems for one-dimensional and double Franklin series

G. G. Gevorkyan

Yerevan State University

Abstract: The paper contains two main results. First we describe one-dimensional Franklin series converging everywhere except possibly on a finite set to an everywhere-finite integrable function. Second we establish a class of subsets of $[0, 1]^2$ with the following property. If a double Franklin series converges everywhere except on this set to an everywhere-finite integrable function, then it is the Fourier–Franklin series of this function. In particular, all countable sets are in this class.

Keywords: uniqueness theorem, $U$-set, Vallée–Poussin set, Franklin system, double series.

UDC: 517.53

MSC: 42C10

Received: 12.12.2018
Revised: 06.05.2020

DOI: 10.4213/im8889


 English version:
Izvestiya: Mathematics, 2020, 84:5, 829–844

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026