RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2019 Volume 83, Issue 6, Pages 104–132 (Mi im8872)

This article is cited in 1 paper

Instantaneous blow-up versus local solubility of the Cauchy problem for a two-dimensional equation of a semiconductor with heating

M. O. Korpusovab, A. A. Panina

a Faculty of Physics, Lomonosov Moscow State University
b Peoples' Friendship University of Russia, Moscow

Abstract: We consider the Cauchy problem for a model third-order partial differential equation with non-linearity of the form $|\nabla u|^q$. We prove that for $q\in(1,2]$ the Cauchy problem in $\mathbb{R}^2$ has no local-in-time weak solution for a large class of initial functions, while for $q>2$ a local weak solution exists.

Keywords: finite-time blow-up, non-linear waves, instantaneous blow-up.

UDC: 517.957

MSC: Primary 35B44; Secondary 35K30, 35D30

Received: 12.10.2018

DOI: 10.4213/im8872


 English version:
Izvestiya: Mathematics, 2019, 83:6, 1174–1200

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026