RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2019 Volume 83, Issue 4, Pages 100–128 (Mi im8782)

This article is cited in 6 papers

Birationally rigid complete intersections of high codimension

D. Evans, A. V. Pukhlikov

Department of Mathematical Sciences, University of Liverpool

Abstract: We prove that a Fano complete intersection of codimension $k$ and index $1$ in the complex projective space ${\mathbb P}^{M+k}$ for $k\geqslant 20$ and $M\geqslant 8k\log k$ with at most multi-quadratic singularities is birationally superrigid. The codimension of the complement of the set of birationally superrigid complete intersections in the natural moduli space is shown to be at least $(M-5k)(M-6k)/2$. The proof is based on the technique of hypertangent divisors combined with the recently discovered $4n^2$-inequality for complete intersection singularities.

Keywords: birational rigidity, maximal singularity, multiplicity, hypertangent divisor, complete intersection singularity.

UDC: 512.76

MSC: Primary 14E05; Secondary 14E07

Received: 07.03.2018

DOI: 10.4213/im8782


 English version:
Izvestiya: Mathematics, 2019, 83:4, 743–769

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026