RUS
ENG
Full version
JOURNALS
// Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
// Archive
Izv. RAN. Ser. Mat.,
2019
Volume 83,
Issue 3,
Pages
113–126
(Mi im8761)
Stably rational surfaces over a quasi-finite field
J.-L. Colliot-Thélène
CNRS, Université Paris-Sud Université Paris-Saclay, Département de Mathématiques d'Orsay, France
Abstract:
Let
$k$
be a field and
$X$
a smooth, projective, stably
$k$
-rational surface. If
$X$
is split by a cyclic extension (for example, if the field
$k$
is finite or, more generally, quasi-finite), then the surface
$X$
is
$k$
-rational.
Keywords:
rational surfaces, stable rationality, quasi-finite fields, cyclic splitting, Brauer group.
UDC:
512.77
MSC:
14M20
,
14E08
,
14J26
,
14F22
Received:
24.01.2018
Revised:
13.10.2018
Language:
French
DOI:
10.4213/im8761
Fulltext:
PDF file (675 kB)
References
English version:
Izvestiya: Mathematics, 2019,
83
:3,
521–533
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026