RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2019 Volume 83, Issue 1, Pages 59–74 (Mi im8731)

This article is cited in 3 papers

Existence theorems for a class of systems involving two quasilinear operators

D.-P. Covei

The Bucharest Uviversity of Economic Studies, Romania

Abstract: In this paper, we study the existence of positive radial solutions for a class of quasilinear systems of the form
$$ \begin{cases} \Delta_{\phi_1}u=a_1(|x|)f_1(v), \\ \Delta_{\phi_2}v=a_2(|x|)f_2(u), \end{cases} \quad x\in \mathbb{R}^N, \quad N\geqslant 3, $$
where $\Delta_{\phi}w:=\operatorname{div}(\phi(|\nabla w|)\nabla w)$, under appropriate conditions on the functions $\phi_1$, $\phi_2$, the weights $a_1$, $a_2$ and the non-linearities $f_1$, $f_2$. The conditions imposed for the existence of such solutions are different from those in previous results.

Keywords: partial differential equations, cooperative systems, linear systems, non-linear systems, methods of approximation.

UDC: 517.956

MSC: 34B15, 34B18, 35B08, 35B09, 35B44, 35M30

Received: 01.11.2017

DOI: 10.4213/im8731


 English version:
Izvestiya: Mathematics, 2019, 83:1, 49–64

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026