RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1993 Volume 57, Issue 3, Pages 179–191 (Mi im873)

This article is cited in 1 paper

On the basis property of certain polynomial systems in spaces of entire functions of exponential type

V. A. Oskolkov

Moscow Institute of Municipal Economy and Construction

Abstract: A class $A$ of polynomial systems $\{a _n(z)\}_0^\infty (a_n^{(n)}(z)\equiv 1,$ $\ n\geqslant 0)$ is considered such that each polynomial $a_n(z)$, starting with $a_1(z)$, has together with its derivatives of order up to and including $(n-1)$at least one zero in the closed unit disc. It is shown that each polynomial system of the class $A$ forms a quasipower basis in the space of entire functions of exponential type less than $R$ $(R>0)$, provided $R$ does not exceed a certain absolute constant $\sigma(A)\in (0,41,\quad 0,5]$.

UDC: 517.535.4

MSC: 30H05

Received: 18.12.1991


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1994, 42:3, 587–599

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026