RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2019 Volume 83, Issue 2, Pages 174–203 (Mi im8673)

This article is cited in 1 paper

Asymptotics of solutions of a modified Whitham equation with surface tension

P. I. Naumkin

National Autonomous University of Mexico, Institute of Mathematics

Abstract: We study the large-time behaviour of solutions of the Cauchy problem for a modified Whitham equation,
$$ \begin{cases} u_{t}+i\mathbf{\Lambda}u-\partial_{x}u^3=0, &(t,x) \in\mathbb{R}^2, \\ u(0,x)=u_0(x), &x\in \mathbb{R}, \end{cases} $$
where the pseudodifferential operator $\mathbf{\Lambda}\equiv \Lambda (-i\partial_{x})=\mathcal{F}^{-1}[\Lambda (\xi) \mathcal{F}]$ is given by the symbol
$$ \Lambda (\xi)=a^{-{1}/{2}}\xi \biggl(\sqrt{(1+a^2\xi^2) \frac{\operatorname{tanh}a\xi}{a\xi}\,}-1\biggr) $$
with a parameter $a>0$. This symbol corresponds to the total dispersion relation for water waves taking surface tension into account. Assuming that the total mass of the initial data is equal to zero ($\int_{\mathbb{R}}u_0(x)\,dx=0$) and the initial data $u_0$ are small in the norm of $\mathbf{H}^{\nu}(\mathbb{R}) \cap \mathbf{H}^{0,1}(\mathbb{R})$, $\nu \geqslant 22$, we prove the existence of a global-in-time solution and describe its large-time asymptotic behaviour.

Keywords: Whitham equation, critical non-linearity, large-time asymptotics.

UDC: 517.956.8 + 517.953

MSC: 35B40, 35Q35, 76B15

Received: 20.03.2017
Revised: 27.08.2018

DOI: 10.4213/im8673


 English version:
Izvestiya: Mathematics, 2019, 83:2, 361–390

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026