RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2018 Volume 82, Issue 3, Pages 3–30 (Mi im8655)

This article is cited in 1 paper

Basis properties of affine Walsh systems in symmetric spaces

S. V. Astashkina, P. A. Terekhinb

a Samara National Research University
b Saratov State University

Abstract: We study the basis properties of affine Walsh-type systems in symmetric spaces. We show that the ordinary Walsh system is a basis in a separable symmetric space $X$ if and only if the Boyd indices of $X$ are non-trivial, that is, $0<\alpha_X\le\beta_X<1$. In the more general situation when the generating function $f$ is the sum of a Rademacher series, we find exact conditions for the affine system $\{f_n\}_{n=0}^\infty$ to be equivalent to the Walsh system in an arbitrary separable s. s. with non-trivial Boyd indices. We also obtain sufficient conditions for the basis property. In particular, it follows from these conditions that for every $p\in(1,\infty)$ there is a function $f$ such that the affine Walsh system $\{f_n\}_{n=0}^{\infty}$ generated by $f$ is a basis in those and only those separable s. s. $X$ that satisfy $1/p<\alpha_X\le\beta_X<1$.

Keywords: basis, Walsh functions, Rademacher functions, Haar functions, symmetric space, affine Walsh-type system.

UDC: 517.982.27+517.518.3

MSC: 46E30

Received: 23.01.2017

DOI: 10.4213/im8655


 English version:
Izvestiya: Mathematics, 2018, 82:3, 451–476

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026