RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2018 Volume 82, Issue 2, Pages 113–139 (Mi im8623)

This article is cited in 11 papers

On the basis property of the system of eigenfunctions and associated functions of a one-dimensional Dirac operator

A. M. Savchuk

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study a one-dimensional Dirac system on a finite interval. The potential (a $2\times 2$ matrix) is assumed to be complex-valued and integrable. The boundary conditions are assumed to be regular in the sense of Birkhoff. It is known that such an operator has a discrete spectrum and the system $\{\mathbf{y}_n\}_1^\infty$ of its eigenfunctions and associated functions is a Riesz basis (possibly with brackets) in $L_2\oplus L_2$. Our results concern the basis property of this system in the spaces $L_\mu\oplus L_\mu$ for $\mu\ne2$, the Sobolev spaces ${W_2^\theta\oplus W_2^\theta}$ for $\theta\in[0,1]$, and the Besov spaces $B^\theta_{p,q}\oplus B^\theta_{p,q}$.

Keywords: Dirac operator, eigenfunctions and associated functions, conditional basis, Riesz basis.

UDC: 517.984.52

MSC: 34L10, 34L40, 47E05

Received: 26.10.2016
Revised: 19.08.2017

DOI: 10.4213/im8623


 English version:
Izvestiya: Mathematics, 2018, 82:2, 351–376

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026