RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2018 Volume 82, Issue 2, Pages 43–78 (Mi im8579)

This article is cited in 11 papers

Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities

M. O. Korpusova, D. V. Lukyanenkoa, A. A. Paninab, E. V. Yushkovac

a Lomonosov Moscow State University, Faculty of Physics
b Nikol'skii Mathematical Institute of Peoples’ Friendship University of Russia
c Space Research Institute, Russian Academy of Sciences, Moscow

Abstract: We consider a series of initial-boundary value problems for the equation of ion-sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical-numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditions for finite-time blow-up and an upper bound for the blow-up time. In concrete numerical examples we improve these bounds numerically using the mesh refinement method. Thus the analytical and numerical parts of the investigation complement each other. The time interval for the numerical modelling is chosen in accordance with the analytically obtained upper bound for the blow-up time. In return, numerical calculations specify the moment and pattern of this blow-up.

Keywords: blow-up of a solution, non-linear initial-boundary value problem, Sobolev-type equations, exponential non-linearity, Richardson extrapolation.

UDC: 517.957+519.6

MSC: 35B44, 35L35, 35Q60, 76X05

Received: 11.06.2016

DOI: 10.4213/im8579


 English version:
Izvestiya: Mathematics, 2018, 82:2, 283–317

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026