RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2017 Volume 81, Issue 3, Pages 109–133 (Mi im8548)

This article is cited in 8 papers

A criterion for the best uniform approximation by simple partial fractions in terms of alternance. II

M. A. Komarov

Vladimir State University

Abstract: In the problem of approximating real functions $f$ by simple partial fractions of order ${\le}\,n$ on closed intervals $K=[c-\varrho,c+\varrho]\subset\mathbb{R}$, we obtain a criterion for the best uniform approximation which is similar to Chebyshev's alternance theorem and considerably generalizes previous results: under the same condition $z_j^*\notin B(c,\varrho)= \{z\colon|z-c|\le\varrho\}$ on the poles $z_j^*$ of the fraction $\rho^*(n,f,K;x)$ of best approximation, we omit the restriction $k=n$ on the order $k$ of this fraction. In the case of approximation of odd functions on $[-\varrho,\varrho]$, we obtain a similar criterion under much weaker restrictions on the position of the poles $z_j^*$: the disc $B(0,\varrho)$ is replaced by the domain bounded by a lemniscate contained in this disc. We give some applications of this result. The main theorems are extended to the case of weighted approximation. We give a lower bound for the distance from $\mathbb{R}^+$ to the set of poles of all simple partial fractions of order ${\le}\,n$ which are normalized with weight $2\sqrt x$ on $\mathbb{R}^+$ (a weighted analogue of Gorin's problem on the semi-axis).

Keywords: simple partial fraction, approximation, alternance, uniqueness, disc, odd function, lemniscate.

UDC: 517.538

MSC: 41A20, 41A50

Received: 15.03.2016
Revised: 05.05.2016

DOI: 10.4213/im8548


 English version:
Izvestiya: Mathematics, 2017, 81:3, 568–591

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026