RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2018 Volume 82, Issue 1, Pages 34–64 (Mi im8484)

Morera-type theorems in the hyperbolic disc

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University

Abstract: Let $G$ be the group of conformal automorphisms of the unit disc $\mathbb{D}=\{z\in\mathbb{C}\colon |z|<1\}$. We study the problem of the holomorphicity of functions $f$ on $\mathbb{D}$ satisfying the equation
$$ \int_{\gamma_{\varrho}} f(g (z))\, dz=0 \quad \forall \, g\in G, $$
where $\gamma_{\varrho}=\{z\in\mathbb{C}\colon |z|=\varrho\}$ and $\rho\in (0,1)$ is fixed. We find exact conditions for holomorphicity in terms of the boundary behaviour of such functions. A by-product of our work is a new proof of the Berenstein–Pascuas two-radii theorem.

Keywords: holomorphicity, conformal automorphism, boundary behaviour.

UDC: 517.444

MSC: 30A05, 43A80, 43A90, 44A15, 44A35, 45Q05

Received: 05.12.2015
Revised: 18.09.2016

DOI: 10.4213/im8484


 English version:
Izvestiya: Mathematics, 2018, 82:1, 31–60

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026