RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2016 Volume 80, Issue 6, Pages 247–257 (Mi im8447)

This article is cited in 14 papers

Simple right alternative superalgebras of Abelian type whose even part is a field

S. V. Pchelintsev, O. V. Shashkov

Financial University under the Government of the Russian Federation, Moscow

Abstract: We study central simple unital right alternative superalgebras $B=\Gamma\oplus M$ of Abelian type of arbitrary dimension whose even part $\Gamma$ is a field. We prove that every such superalgebra $B=\Gamma\oplus M$, except for the superalgebra $B_{1|2}$, is a double, that is, the odd part can be represented in the form $M=\Gamma x$ for a suitable $x$.
If the generating element $x$ commutes with the even part $\Gamma$, then $B$ is isomorphic to a twisted superalgebra of vector type $B(\Gamma,D,\gamma)$ introduced by Shestakov [1], [2]. But if $x$ commutes with the odd part $M$, then $B$ is isomorphic to a superalgebra $B(\Gamma, {}^*,R_\omega)$ introduced in [3] and called an $\omega$-double.
We prove that if the ground field is algebraically closed, then $B$ is isomorphic to one of the superalgebras $B_{1|2}$, $B(\Gamma,D,\gamma)$, $B(\Gamma,{}^*,R_\omega)$.

Keywords: simple right alternative superalgebra, superalgebra of Abelian type.

UDC: 512.554.5

MSC: 17A70, 17D15

Received: 01.10.2015

DOI: 10.4213/im8447


 English version:
Izvestiya: Mathematics, 2016, 80:6, 1231–1241

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026