RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2016 Volume 80, Issue 4, Pages 35–48 (Mi im8429)

This article is cited in 29 papers

Cyclic covers that are not stably rational

J.-L. Colliot-Thélèneab, A. Pirutkac

a Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
b Université de Paris-Sud Mathematiques, Département de Mathématique
c Ècole Polytechnique CNRS, Centre de Mathématiques Appliquées

Abstract: Using methods developed by Kollár, Voisin, ourselves and Totaro, we prove that a cyclic cover of $\mathbb P_{\mathbb C}^n$, $n\geqslant 3$, of prime degree $p$, ramified along a very general hypersurface $f(x_0,\dots , x_n)=0$ of degree $mp$, is not stably rational if $m(p-1) <n+1\leqslant mp$. In dimension 3 we recover double covers of $\mathbb P^3_{\mathbb C}$ ramified along a very general surface of degree 4 (Voisin) and double covers of $\mathbb P^3_{\mathbb C}$ ramified along a very general surface of degree 6 (Beauville). We also find double covers of $\mathbb P^4_{\mathbb C}$ ramified along a very general hypersurface of degree 6. This method also enables us to produce examples over a number field.

Keywords: stable rationality, Chow group of zero-cycles, cyclic covers.

UDC: 512.752

MSC: 14E08, 14M20, 14C15, 14C25, 14G15

Received: 06.07.2015

DOI: 10.4213/im8429


 English version:
Izvestiya: Mathematics, 2016, 80:4, 665–677

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026