RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2016 Volume 80, Issue 6, Pages 230–246 (Mi im8341)

This article is cited in 3 papers

Bounds and behaviour of the quantities $P(x)$, $\Delta(x)$ on short intervals

D. A. Popov

A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University

Abstract: We study the dependence of upper bounds for the quantity $|P(n)|$ on certain properties of the behaviour of $|P(x)|$ in a neighbourhood of the point $x=n$. In particular, it is proved that, if $n$ is a point of local maximum of the quantity $|P(x)|$, where $|P(n)|>Cn^{1/4}$ and the maximum is broad ($|P(x)-P(n)|<B|P(n)|$, $B<1$, if $|x-n|<Cn^{1/2-\varepsilon}$), then $|P(n)|>Cn^{1/4+\varepsilon}$.

Keywords: circle problem and divisor problem, Voronoi–Hardy and Landau formulae, short intervals.

UDC: 511.335

MSC: Primary 11P24; Secondary 11N37

Received: 21.01.2015
Revised: 02.02.2015

DOI: 10.4213/im8341


 English version:
Izvestiya: Mathematics, 2016, 80:6, 1213–1230

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026