RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1993 Volume 57, Issue 6, Pages 212–226 (Mi im834)

This article is cited in 6 papers

On an extremal problem on the minimum of a trigonometric polynomial

A. S. Belov


Abstract: The exact value of the quantity
$$ M(n)=\min\biggl\{-\min_x\sum_{k=1}^na_k\cos(kx)\colon a_1\geqslant 1,\dots ,a_n\geqslant 1\biggr\} $$
is found for any positive integer $n$. It is proved that an extremal trigonometric polynomial on which this minimum is attained is unique. Some properties of these extremal polynomials are studied.

UDC: 517.5

MSC: 42A05

Received: 30.06.1992


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1994, 43:3, 593–606

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026