RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2014 Volume 78, Issue 6, Pages 141–152 (Mi im8166)

On invariants of free restricted Lie algebras

Victor Petrogradskyab, I. A. Subbotinb

a University of Brasilia
b Ulyanovsk State University, Faculty of Mathematics and Information Technologies

Abstract: We prove that the invariant subalgebra $L^G$ is infinitely generated, where $L=L(X)$ is the free restricted Lie algebra of finite rank $k$ with free generating set $X=\{x_1,\dots,x_k\}$ over an arbitrary field of positive characteristic and $G$ is a non-trivial finite group of homogeneous automorphisms of $L(X)$. We show that the sequence $|Y_n|$, $n\geqslant1$, grows exponentially with base $k$, where $Y=\bigcup_{n=1}^\infty Y_n$ is a free homogeneous generating set of $L^G$ and all the elements of $Y_n$ are of degree $n$ in $X$, $n\geqslant1$. We prove that the radius of convergence of the generating function $\mathcal H(Y,t)=\sum_{n=1}^\infty|Y_n|t^n$ is equal to $1/k$ and find an asymptotic formula for the growth of $\mathcal H(Y,t)$ as $t\to1/k-0$.

Keywords: free Lie algebras, restricted Lie algebras, generating functions, invariants, group actions.

UDC: 512.55

MSC: 17B01, 17B50, 15A72, 16W22, 16P90

Received: 27.08.2013

DOI: 10.4213/im8166


 English version:
Izvestiya: Mathematics, 2014, 78:6, 1195–1206

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026