RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2014 Volume 78, Issue 3, Pages 3–18 (Mi im8035)

This article is cited in 5 papers

Modelling unsteady processes in semiconductors using a non-linear Sobolev equation

A. I. Aristov

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Abstract: We study an initial-boundary value problem for a non-linear Sobolev equation containing a summand non-local in time and an inhomogeneity. The equation simulates unsteady processes in semiconductors. We find sufficient conditions for the unique solubility of the problem, both global in time and local (rather than global). In the case when the problem is soluble only locally, we find upper and lower bounds for the lifespan of a solution.

Keywords: equations of Sobolev type, blow-up of solutions, method of energy estimates.

UDC: 517.955.8

MSC: Primary 35G31; Secondary 35B44

Received: 11.07.2012
Revised: 23.09.2013

DOI: 10.4213/im8035


 English version:
Izvestiya: Mathematics, 2014, 78:3, 427–442

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026