RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2013 Volume 77, Issue 3, Pages 139–148 (Mi im8017)

This article is cited in 2 papers

Elliptic fibrations of maximal rank on a supersingular K3 surface

T. Shioda

Rikkyo University, Department of Mathematics, Tokyo, Japan

Abstract: We study a class of elliptic $\mathrm{K3}$ surfaces defined by an explicit Weierstrass equation to find elliptic fibrations of maximal rank on $\mathrm{K3}$ surface in positive characteristic. In particular, we show that the supersingular $\mathrm{K3}$ surface of Artin invariant 1 (unique by Ogus) admits at least one elliptic fibration with maximal rank 20 in every characteristic $p>7$, $p\ne 13$, and further that the number, say $N(p)$, of such elliptic fibrations (up to isomorphisms), is unbounded as $p\to\infty$; in fact, we prove that $\lim_{p\to\infty} N(p)/p^{2} \geqslant (1/12)^{2}$.
Bibliography: 19 titles.

Keywords: $\mathrm{K3}$ surface, Mordell–Weil lattice, Artin invariant.

UDC: 512.7

MSC: 14J27, 14J28, 14H40

Received: 26.06.2012

Language: English

DOI: 10.4213/im8017


 English version:
Izvestiya: Mathematics, 2013, 77:3, 571–580

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026