RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2013 Volume 77, Issue 4, Pages 31–54 (Mi im8015)

Combinatorics associated with inflections and bitangents of plane quartics

M. Kh. Gizatullin

Togliatti State University

Abstract: After a preliminary survey and a description of some small Steiner systems from the standpoint of the theory of invariants of binary forms, we construct a binary Golay code (of length 24) using ideas from J. Grassmann's thesis of 1875. One of our tools is a pair of disjoint Fano planes. Another application of such pairs and properties of plane quartics is a construction of a new block design on 28 objects. This block design is a part of a dissection of the set of 288 Aronhold sevens. The dissection distributes the Aronhold sevens into 8 disjoint block designs of this type.

Keywords: binary form, invariant, point of inflection, bitangent, plane quartic, Aronhold seven, block design, Fano plane, Steiner system, Golay code.

UDC: 512.772+519.725+519.172

MSC: 14H50, 05B05, 94B25

Received: 25.06.2012
Revised: 14.11.2012

DOI: 10.4213/im8015


 English version:
Izvestiya: Mathematics, 2013, 77:4, 675–695

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026