RUS
ENG
Full version
JOURNALS
// Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
// Archive
Izv. RAN. Ser. Mat.,
2013
Volume 77,
Issue 3,
Pages
5–28
(Mi im8011)
This article is cited in
6
papers
Hasse principle for
$G$
-trace forms
E. Bayer-Fluckiger
a
,
R. Parimala
b
,
J-P. Serre
c
a
Ecole Polytechnique Fédérale de Lausanne
b
Department of Mathematics & Computer Science Emory University Atlanta, GA 30322, USA
c
Collège de France, Paris
Abstract:
Let
$k$
be a global field of characteristic not 2. We prove a local-global principle for the existence of self-dual normal bases, and more generally for the isomorphism of
$G$
-trace forms, for
$G$
-Galois algebras over
$k$
.
Keywords:
Hasse principle,
$G$
-trace forms, Galois algebras, induction-restriction, Burnside rings.
UDC:
512.7
MSC:
11E12
,
11E04
,
20C05
Received:
16.02.2012
Language:
English
DOI:
10.4213/im8011
Fulltext:
PDF file (599 kB)
References
Cited by
English version:
Izvestiya: Mathematics, 2013,
77
:3,
437–460
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026