RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2014 Volume 78, Issue 1, Pages 3–24 (Mi im8010)

This article is cited in 1 paper

Local two-radii theorems on the multi-dimensional sphere

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University

Abstract: Consider those functions on the $n$-dimensional sphere that have zero integrals over all geodesic balls with centres in a given set $E$. We obtain a description of such functions in the case when $E$ is a geodesic sphere on $\mathbb S^n$. We also find a criterion for the existence of non-zero functions with this property in the case when the set of centres is the union of two geodesic spheres. We obtain analogues of these results for quasi-analytic classes of functions.

Keywords: two-radii theorems, Legendre functions, spherical harmonics, quasi-analytic classes.

UDC: 517.988.28

MSC: 33C55, 43A90, 44A15, 53C65, 26E10

Received: 18.06.2012

DOI: 10.4213/im8010


 English version:
Izvestiya: Mathematics, 2014, 78:1, 1–21

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026