RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2013 Volume 77, Issue 6, Pages 3–44 (Mi im8005)

This article is cited in 6 papers

Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras

V. V. Bavula

The University of Sheffield

Abstract: We make a detailed study of the Lie algebras $\mathfrak{u}_n$, $n\geqslant 2$, of triangular polynomial derivations, their injective limit $\mathfrak{u}_\infty$, and their completion $\widehat{\mathfrak{u}}_\infty$. We classify the ideals of $\mathfrak{u}_n$ (all of which are characteristic ideals) and use this classification to give an explicit criterion for Lie factor algebras of $\mathfrak{u}_n$ and $\mathfrak{u}_m$ to be isomorphic. We introduce two new dimensions for (Lie) algebras and their modules: the central dimension $\operatorname{c.dim}$ and the uniserial dimension $\operatorname{u.dim}$, and show that $\operatorname{c.dim}(\mathfrak{u}_n)=\operatorname{u.dim}(\mathfrak{u}_n) =\omega^{n-1}+\omega^{n-2}+\dots+\omega +1$ for all $n\geqslant 2$, where $\omega$ is the first infinite ordinal. Similar results are proved for the Lie algebras $\mathfrak{u}_\infty$ and $\widehat{\mathfrak{u}}_\infty$. In particular, $\operatorname{u.dim}(\mathfrak{u}_\infty)=\omega^\omega$ and $\operatorname{c.dim}(\mathfrak{u}_\infty)=0$.

Keywords: Lie algebra, triangular polynomial derivations, automorphism, isomorphism problem, the derived series and lower central series, locally nilpotent derivations, locally nilpotent and locally finite-dimensional Lie algebras.

UDC: 512.81

MSC: 17B66, 17B40, 17B65, 17B30, 17B35

Received: 05.06.2012

DOI: 10.4213/im8005


 English version:
Izvestiya: Mathematics, 2013, 77:6, 1067–1104

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026