RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2012 Volume 76, Issue 5, Pages 57–72 (Mi im8001)

This article is cited in 15 papers

Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space

N. V. Denisovaa, V. V. Kozlovb, D. V. Treschevb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Steklov Mathematical Institute of the Russian Academy of Sciences

Abstract: We consider problems related to the well-known conjecture on the degrees of irreducible polynomial integrals of a reversible Hamiltonian system with two degrees of freedom and toral position space. The main object of study is a special system arising in the analysis of irreducible polynomial integrals of degree 4. In a particular case we have the problem of the motion of two interacting particles on a circle in given potential fields. We prove that if the three potentials are smooth non-constant functions, then this problem has no non-trivial polynomial integrals of arbitrarily high degree. We prove the conjecture completely for systems with a polynomial first integral of degree 4 in the momenta.

Keywords: irreducible integrals, systems with impacts, spectrum of a potential.

UDC: 517.9+531.01

MSC: 37J15, 70F05, 70H07

Received: 25.04.2012

DOI: 10.4213/im8001


 English version:
Izvestiya: Mathematics, 2012, 76:5, 907–921

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026