RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2014 Volume 78, Issue 1, Pages 117–166 (Mi im7998)

This article is cited in 27 papers

Fourier–Jacobi harmonic analysis and approximation of functions

S. S. Platonov

Petrozavodsk State University

Abstract: We use the methods of Fourier–Jacobi harmonic analysis to study problems of the approximation of functions by algebraic polynomials in weighted function spaces on $[-1,1]$. We prove analogues of Jackson's direct theorem for the moduli of smoothness of all orders constructed on the basis of Jacobi generalized translations. The moduli of smoothness are shown to be equivalent to $K$-functionals constructed from Sobolev-type spaces. We define Nikol'skii–Besov spaces for the Jacobi generalized translation and describe them in terms of best approximations. We also prove analogues of some inverse theorems of Stechkin.

Keywords: Fourier–Jacobi harmonic analysis, approximation of functions, generalized translations, Jacobi polynomials, function spaces.

UDC: 517.518.8

MSC: 41A10, 42A10, 42C05, 33C45

Received: 10.05.2012
Revised: 10.11.2012

DOI: 10.4213/im7998


 English version:
Izvestiya: Mathematics, 2014, 78:1, 106–153

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026