RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2008 Volume 72, Issue 4, Pages 3–24 (Mi im737)

This article is cited in 16 papers

The algebra of bipartite graphs and Hurwitz numbers of seamed surfaces

A. V. Alekseevskiia, S. M. Natanzonbca

a A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
c Independent University of Moscow

Abstract: We extend the definition of Hurwitz numbers to the case of seamed surfaces, which arise in new models of mathematical physics, and prove that they form a system of correlators for a Klein topological field theory in the sense defined in [1]. We find the corresponding Cardy–Frobenius algebras, which yield a method for calculating the Hurwitz numbers. As a by-product, we prove that the vector space generated by the bipartite graphs with $n$ edges possesses a natural binary operation that makes this space into a non-commutative Frobenius algebra isomorphic to the algebra of intertwining operators for a representation of the symmetric group $S_n$ on the space generated by the set of all partitions of a set of $n$ elements.

UDC: 514.7+512.7

MSC: 30F50, 14H30, 20C05, 81T45

Received: 28.12.2005
Revised: 15.02.2007

DOI: 10.4213/im737


 English version:
Izvestiya: Mathematics, 2008, 72:4, 627–646

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026