RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2012 Volume 76, Issue 3, Pages 3–18 (Mi im7332)

This article is cited in 1 paper

The thermodynamic formalism for the de Rham function: increment method

M. Ben Slimane

College of Science, King Saud University

Abstract: We study the de Rham function: the unique continuous (nowhere differentiable) function $F \in L^1(\mathbb{R})$ with $\int F(x)\,dx=1$ satisfying the functional equation $F(x)=F(3x)+\frac{1}{3}\bigl(F(3x-1)+F(3x+1) \bigr)+\frac{2}{3}\bigl(F(3x-2)+F(3x+2)\bigr)$. We show that its pointwise Hölder regularity $\alpha(x)=\liminf_{h\to 0}\frac{\log(|F(x+h)-F(x)|)}{\log |h|}$ differs widely from point to point, and the values of $\alpha(x)$ fill an interval parametrizing the fractal sets $E^{(\alpha)}$, where $E^{(\alpha)}$ is the set of points $x$ with Hölder exponent $\alpha(x)=\alpha$. We also prove that the thermodynamic formalism (increment method) holds for the de Rham function: we have a heuristic formula $d(\alpha)=\inf_{q >0}(\alpha q-\zeta(q)+1)$ relating the order of decay of $\int_{\mathbb{R}}|F(x+h)-F(x)|^{q}\,dx \sim |h|^{\zeta(q)}$ as $h \to 0$ with the Hausdorff dimension $d(\alpha)$ of $E^{(\alpha)}$.

Keywords: Hölder regularity, Hausdorff dimension, increments, thermodynamic formalism.

UDC: 517.589

MSC: 26A16, 26A30, 28A80, 42C15, 76F99

Received: 06.03.2011

DOI: 10.4213/im7332


 English version:
Izvestiya: Mathematics, 2012, 76:3, 431–445

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026