RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2012 Volume 76, Issue 4, Pages 49–64 (Mi im7301)

This article is cited in 5 papers

On the rate of convergence of orthorecursive expansions over non-orthogonal wavelets

A. Yu. Kudryavtsev

Moscow State Institute of International Relations (University) of the Ministry for Foreign Affairs of Russia

Abstract: We consider orthorecursive expansions (a generalization of orthogonal series) over families of non-orthogonal wavelets formed by the dyadic dilations and integer shifts of a given function $\varphi$. We estimate the rate of convergence of such expansions under some fairly relaxed restrictions on $\varphi$ and give examples of these estimates in some concrete cases.

Keywords: orthorecursive expansion, wavelets, Parseval's identity, greedy algorithm, rate of convergence, computational stability, Faber–Schauder system.

UDC: 517.518+517.982

MSC: 42C15, 46E20

Received: 25.02.2011
Revised: 19.07.2011

DOI: 10.4213/im7301


 English version:
Izvestiya: Mathematics, 2012, 76:4, 688–701

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026